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Abstract

Facility location is a well-studied problem in social choice lit-
erature, where agents’ preferences are restricted to be single-
peaked. When the number of agents is treated as a variable
(e.g., not observable a priori), a social choice function must
be defined so that it can accept any possible number of prefer-
ences as input. Furthermore, there exist cases where multiple
choices must be made continuously while agents dynamically
arrive/leave. Under such variable/dynamic populations, a so-
cial choice function needs to give each agent an incentive to
sincerely report her existence (e.g., participation/no-hiding).
In this paper we investigate facility location models with vari-
able/dynamic populations. For a static (one-shot), variable
population model, we provide a necessary and sufficient con-
dition for a social choice function to satisfy participation, as
well as truthfulness, anonymity, and Pareto efficiency. The
condition is given as a further restriction on the well-known
median voter schemes. For a dynamic model, we first propose
an online social choice function, which is optimal for the to-
tal sum of the distances between the choices in the previous
and current periods, among any Pareto efficient functions. We
then define a generalized class of online social choice func-
tions and compare their performances both theoretically and
experimentally.

1 Introduction
Facility location is a well-studied problem in the literature of
social choice and known as a special case of voting (Moulin
1980). In the problem, each agent (voter) is located at a
point on an interval, which represents the set of social al-
ternatives. Under the realization of a social alternative as the
outcome of a social choice function, an agent’s cost is de-
fined as the distance between the outcome and its location.
In other words, agents’ preferences are restricted to single-
peaked ones. This restriction on their preferences guarantees
the existence of a Condorcet winner. Actually the alternative
most preferred by the median voter, i.e., the agent whose lo-
cations is the b(n + 1)/2c-th smallest among n agents, is a
Condorcet winner.

In the literature of mechanism design, truthfulness is one
of the most important properties that must be preserved by
a social choice function. It requires that no agent can benefit
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by misreporting her location to the social choice function,
regardless of other agents’ reports. Clarifying the necessary
and sufficient condition for a social choice function to sat-
isfy truthfulness has greatly attracted considerable attention
of researchers. The median voter schemes, which contains
the above median rule as a special case, are the only social
choice functions that satisfy truthfulness, Pareto efficiency,
and anonymity (Moulin 1980).

The traditional model of facility location problems as-
sumes that a social choice function knows the number n
of agents a priori, or at least, the parameter n is given as a
fixed constant. In practice, however, the number of agents is
sometimes not previously observable. For instance, in a poll
on a social networking service, it is somewhat unrealistic to
assume that its organizer knows the exact number of votes
beforehand. It may be even possible that agents in the mar-
ket can partially manipulate the population. In such a case,
the behavior of a social choice function for different sets of
agents must be carefully analyzed.

One such situation is the case where agents’ participa-
tion is voluntary, like the above online poll. An agent would
choose not to participate in a social choice function if she
benefits by doing so. Indeed, the development of the Inter-
net makes it quite easy for people to get much information
about an online poll before it opens. To appropriately reflect
agents’ preference in the outcome, a social choice function
should guarantee that participation by reporting true loca-
tion is weakly better than not participating. This property is
known as participation and has been studied in the litera-
ture of social choice (Fishburn and Brams 1983). However,
to the best of our knowledge, there has been no work that
addressed a necessary and sufficient condition for a social
choice function to satisfy participation as well as truthful-
ness in facility location problems.

Another possibility is to face the dynamic participation
of agents, where the outcome space is divided into periods
and agents arrive and depart over time. Since it is natural to
assume that their arrivals and departures are also private in-
formation, a social choice function needs to be defined for
any number of agents participating in the market during a
period. At the same time, the truthfulness property also be-
comes stronger, which requires that participating at their true
arrival periods by reporting their true locations is a dominant
strategy.



In this paper we study such variable population in both
static and dynamic facility location models. The static model
is an extension of Moulin’s model (1980). The dynamic
model is an application of the concept of online mecha-
nism design, originally proposed by Hajiaghayi et al. (2004)
to facility location. For both of our models, our analysis is
based on a perspective of mechanism design, where these
four properties, i.e., truthfulness, participation, Pareto effi-
ciency and anonymity, are treated as desiderata.

For the static model, we give a necessary and sufficient
condition for a social choice function to satisfy participation,
as well as truthfulness, anonymity, and Pareto efficiency.
The condition is given as a further refinement of the param-
eters of a median voter scheme. A quite similar approach by
Todo et al. (2011), addresses a property called false-name-
proofness, instead of participation. The condition obtained
in our paper is strictly weaker than that obtained by them.
Note that, however, we also clarified that participation and
false-name-proofness themselves have no inclusion relation
by presenting a social choice function that is false-name-
proof and violates participation.

For the dynamic model, we propose an online social
choice function, the so-called dynamic target rule, which
satisfies all four desiderata. It is inspired from well-known
target rules for a static model (Ching and Thomson forth-
coming; Klaus 2001), which is actually the social choice
function obtained by the above condition by Todo et al.
(2011). For the static model, the target rule works as follows:
it has a pre-defined parameter p and returns, for a given pro-
file of reported locations, the closest alternative to p among
the Pareto efficient ones if p is not Pareto efficient, and re-
turns p otherwise. The idea of the dynamic target rule for
the dynamic model is that, a target rule (in the static sense)
is used for each period, where the outcome at the current
period t is set as the parameter for the next period t+ 1.

Although Pareto efficiency is a very popular qualitative
measure for evaluating social choice functions, quantitative
analysis has also been used in mechanism design. Guaran-
teeing the worst-case performance is one such example. We
analyze the dynamic target rule from this perspective and
show that it is optimal among online Pareto efficient social
choice functions in terms of a new measure called replace-
ment cost, which is defined as the total sum of the distances
between the choices in previous and current periods, where
the choice at the very first period 0 is commonly fixed as
α for all those rules. On the other hand, it performs poorly
in terms of another well-known measure called social cost.
Therefore, we propose a class of online social choice func-
tions and show that on average they perform reasonably well
in terms of social cost, although there is no dominance be-
tween any two of them.

2 Related Works
Moulin (1980) proposes a necessary and sufficient con-
dition for a social choice function to satisfy truthfulness,
anonymity, and Pareto efficiency, which can also be consid-
ered as a characterization of median voter schemes. Procac-
cia and Tennenholtz (2013) initiated the worst-case analy-
sis of a social choice function, which is also known as ap-

proximate mechanism design. Besides them, there are quite
a few works on voting in dynamic situation. Tennenholtz
(2004) studied a voting model where agents arrive dynam-
ically, but it focused on analyzing social rankings instead
of social choice. Parkes and Procaccia (2013) studied the
dynamic preferences represented by Markov decision pro-
cesses, without considering the dynamic arrival of agents.

Median voter schemes have also been widely studied in
the literature of social choice. Ching and Thomson (forth-
coming) proposed a class of social choice functions called
target rules as a subclass of the median voter schemes, and
give a characterization of them by Pareto efficiency and an-
other consistency property called population monotonicity.
However, they did not consider any strategic manipulation
by agents. Arribillaga and Massó (2016) compared a super-
class of median voter schemes, called generalized median
voter schemes, in terms of manipulability by preference mis-
reports. However, they focused on a fixed population model.

Fishburn and Brams (1983) and Moulin (1988) initiated
discussion on participation in social choice. However, their
analysis is for general voting situations with unrestricted
preferences, instead of single-peaked preferences. Participa-
tion has also recently been attracting much attention. Bo-
chet and Gordon (2012) dealt with the property in locating
multiple facilities. Brandl et al. (2017) studied the participa-
tion property in the problem of assigning indivisible objects,
which requires that reporting that all the items are indiffer-
ent is not beneficial for each agent. Some properties that
are relative to participation, including partially hiding infor-
mation, have also been studied in various social choice and
mechanism design environments, such as voting (Brandl et
al. 2015; Brandl, Brandt, and Hofbauer 2015; Brandt, Geist,
and Peters 2016) and assignment (Atlamaz and Klaus 2007;
Guo and Deligkas 2013; Todo, Sun, and Yokoo 2014;
Fujita et al. 2015).

In social choice literature, some works focused on manip-
ulations in situations with variable populations, especially
known as false-name manipulations (Todo, Iwasaki, and
Yokoo 2011; Bu 2013; Lesca, Todo, and Yokoo 2014; Son-
oda, Todo, and Yokoo 2016; Ono, Todo, and Yokoo 2017).
Conitzer (2008) also tackled a property called anonymity-
proofness as a combination of false-name-proofness and par-
ticipation and proposed a randomized anonymity-proof vot-
ing rule for general preferences; but it did not focus on par-
ticipation. In general, to the best of our knowledge, there
has been no work focusing on the participation property in
facility location with variable or dynamic populations.

3 Preliminaries
In this section we introduce the general notations and defi-
nitions that are commonly used in our two different facility
location models to avoid redundantly defining ideas that are
essentially identical. Each specified model will be formally
defined at the beginning of Sections 4 and 5, respectively.

Let N be the set of potential agents and let N ⊆ N be a
set of participating agents. A participating agent i ∈ N has
a true type θi ∈ Θi, where Θi is the set of potential types of
agent i. Let θ := (θi)i∈N ∈ ΘN := ×i∈NΘi be a profile
of the types of a set N of agents, where θ−i := (θj)j 6=i



indicates a profile that consists of all the types in θ except for
the agent i’s type. Let O be the set of social alternatives and
let o ∈ O be a social alternative. A cost function c is shared
among all the potential agents, where the cost incurred to
an agent i with true type θi when a social alternative o is
achieved is represented as c(θi, o) ∈ R≥0.

A social choice function f = (fN )N⊆N is defined as a
family of functions, each fN of which is a mapping from
ΘN to O. This means that, each function fN takes a profile
θ of types jointly reported by the setN of agents as an input,
and returns a social alternative o as an outcome. We write fN
as f if it is clear from the context. Here let R be a function
that restricts an agent’s reportable types, for a given agent’s
true type. Formally, R(θi) ⊆ Θi indicates the set of types
reportable by agent i with true type θi. We assume that θi ∈
R(θi) holds for any i and θi, meaning that each agent can
always report her true type.

Now we introduce the four desiderata, truthfulness,
anonymity, Pareto efficiency, and participation. Truthfulness
requires that for each agent, truthfully reporting her type is
weakly better than reporting any false type, regardless of the
other agents’ reports. Anonymity requires that any permu-
tation of agents types does not change the outcome, even
though the agents’ names are changed. Pareto efficiency re-
quires that there is no other outcome that is weakly preferred
to the outcome chosen by a social choice function by all the
agents, and strictly preferred to by at least one agent. Finally,
participation requires that for each agent, participation by re-
porting her true type is weakly better than not participating.
Definition 1 (Truthfulness). A social choice function f is
truthful if for any N , any θ ∈ ΘN , any i ∈ N , and any
θ′i ∈ R(θi), it holds that c(θi, f(θ)) ≤ c(θi, f(θ′i, θ−i)).
Definition 2 (Anonymity). A social choice function f is
anonymous if for any N , any N ′ such that |N ′| = |N |, any
θ ∈ ΘN , and any θ′ ∈ ΘN ′ , the existence of permutation
π : N → N ′ of N such that θi = θ′π(i) for every i ∈ N

implies f(θ) = f(θ′).
Definition 3 (Pareto efficiency). An outcome o ∈ O Pareto
dominates another outcome o′ under profile θ ∈ ΘN if
c(θi, o) ≤ c(θi, o

′) for all i ∈ N and c(θj , o) < c(θj , o
′)

for at least one j ∈ N . A social choice function f is Pareto
efficient if for any N and any θ ∈ ΘN , there exists no out-
come o ∈ O that Pareto dominates f(θ).
Definition 4 (Participation). A social choice function f sat-
isfies participation if for any N , any θ ∈ ΘN , and any
i ∈ N , it holds that c(θi, f(θ)) ≤ c(θi, f(θ−i)).

Let us also define the median function med, which is used
in several places in this paper. The median function takes
any odd number of values as input and returns the unique
median value. Actually, in this paper, any use of the median
function takes an odd number of values as input.

4 Facility Location in a Static Model
In this section, we first formally define our static model of
facility location, by specifying the notation introduced in the
previous section. Let I := [0, 1] be an interval. We then
define Θi := I for every i ∈ N , R(θi) := Θi for every

θi ∈ Θi, O := I, and c(θi, o) := |θi − o|. In other words,
in this static model, each agent is located at a point θi on the
interval [0, 1], and her cost incurred from a social alternative
o is defined as the distance between o and θi.

Moulin (1980) provided a necessary and sufficient con-
dition for a social choice function defined for a fixed N to
satisfy truthfulness, anonymity, and Pareto efficiency. This
result can be straightforwardly extended to our static model
with variable populations as the following corollary.
Corollary 1. A social choice function f is truthful, anony-
mous, and Pareto efficient if and only if it has, for any posi-
tive integer n ∈ N, n−1 parameters pn = (pn1 , . . . , p

n
n−1) ∈

In−1 such that pn1 ≤ . . . ≤ pnn−1 and for any set N such
that |N | = n and any θ ∈ ΘN ,

fN (θ) = med(θ1, . . . , θn, p
n
1 , . . . , p

n
n−1). (1)

Such a social choice function is known as a median voter
scheme, where those n− 1 parameters are called “phantom
voters” and it chooses the median point out of 2n− 1 points
in total. For example, if we set pn = (0, . . . , 0), it chooses
the location of the leftmost agent among n agents. Similarly,
if we set pn = (0, . . . , 0, 1), it chooses the location of the
second agent from the left, and so on. The following exam-
ple shows that participation does not always hold when there
is no restriction on those parameters.
Example 1. Consider the social choice function described
in Eq. 1 that has the following parameters: pn = (0, . . . , 0)
when n < 5 and pn = (1, . . . , 1) when n ≥ 5. In other
words, this returns the leftmost location among agents’ re-
ports when less than five agents participate and the rightmost
location otherwise. Assume there are five agents such that
the profile of their true types is θ = (0, 0, 1, 1, 1), i.e., two
are located at 0 and the other three at 1. When all five agents
participate and truthfully report their types, the outcome is
1. On the other hand, if an agent at 0 does not participate,
the outcome is 0. Thus the agent at 0 has an incentive to not
participate, which violates the participation property.

The following theorem is our main result for the static
model, which clarifies a necessary and sufficient condition
for a social choice function to satisfy participation as well as
truthfulness, anonymity, and Pareto efficiency.
Theorem 1. A social choice function f is truthful, anony-
mous, Pareto efficient, and satisfies participation if and only
if it is described in Eq. 1 and its parameters are such that
for any positive integer n ∈ {2, . . . , |N |} and any m ∈
{1, . . . , n− 2},

pnm ≤ pn−1
m ≤ pnm+1. (2)

Proof. We first show the if part, i.e., we confirm that any
such f satisfies all the desiderata. From Corollary 1, f is
obviously truthful, anonymous, and Pareto efficient. Now
assume for the sake of contradiction that there exist N ,
θ ∈ ΘN , and i ∈ N such that i benefits by not partici-
pating. Letting q := f(θ), we assume without loss of gener-
ality that θi < q. Here, let L be the number of points strictly
smaller than q in the profile of 2n − 1 points (θ, pn), L′ be
the number of types out of L, and L′′ be the number of pa-
rameters out of L. By definition, L = L′ + L′′, L′ ≥ 1, and



1 ≤ L ≤ n− 1. We also analogously define K, K ′, and K ′′
for the case where i does not participate. It is then obvious
that K ′ = L′ − 1, since i’s type is removed in θ−i. Further-
more, Eq. 2 guarantees that L′′ − 1 ≤ K ′′ ≤ L′′ holds for
the number of parameters. Therefore, K ≤ L − 1 ≤ n − 2
holds, which means that when i does not participate, the me-
dian (the n− 1-th smallest) of the 2n− 3 points (θ−i, p

n−1)
must be at least as large as q. This violates the assumption
that i is better off by not participating.

We next prove the only if part by showing that the par-
ticipation property, combined with the other three, implies
Eq. 2. For the sake of contradiction, assume that a social
choice function f , described in Eq. 1, satisfies participa-
tion and for some n and some m ∈ {1, . . . , n − 2}, either
pn−1
m < pnm or pnm+1 < pn−1

m holds for its parameters. When
pn−1
m < pnm holds, consider a profile θ ∈ ΘN of n locations

such that n−m agents are located at 0 and m agents are lo-
cated at 1. By the definition of the median function med, the
outcome when all the agents participate in and report truth-
fully is f(θ) = pnm. When an agent i at 0 does not partic-
ipate, the outcome becomes f(θ−i) = med(θ−i, p

n−1) =
pn−1
m . Since pn−1

m < pnm holds, c(0, pn−1
m ) < c(0, pnm)

also holds, which violates participation. The same argument
holds for the case of pnm+1 < pn−1

m from symmetry, which
completes the proof.

To confirm the independence of these four conditions, we
show four social choice functions, each of which violates
one of the four properties and still satisfies the remaining
three. The center rule, choosing the average of the leftmost
and rightmost locations, is not truthful, but it is anonymous,
Pareto efficient, and satisfies participation. The dictatorship
rule, which chooses the participating agent with the alpha-
betically youngest identity as a dictator, violates anonymity,
but it is truthful, Pareto efficient, and satisfies participation.
A social choice function that chooses a pre-determined fixed
point as the outcome regardless of the input is not Pareto ef-
ficient, but it is truthful, anonymous, and satisfies participa-
tion. Finally, the social choice function presented in Exam-
ple 1 violates participation, but it still satisfies the remaining
three properties.

The condition can also be treated as a necessary and suf-
ficient condition for a median voter scheme to satisfy partic-
ipation. It is weaker than the necessary and sufficient con-
dition for them to satisfy false-name-proofness, which re-
quires the existence of a parameter p∗ ∈ I such that for
any n, pn = (p∗, . . . , p∗) holds. This implies that under
the assumption of truthfulness, anonymity, and Pareto effi-
ciency, false-name-proofness is stronger than participation.
However, these two properties themselves have no inclusion
relation. Consider a social choice function that performs the
above rule with parameter p∗ = 1 when n ≤ 5 and returns 1
regardless of the input when n > 5. This rule is false-name-
proof and anonymous, but not Pareto efficient. Furthermore,
it violates participation, since an agent has incentive to avoid
participating when n > 5.

The above theorem also works as a characterization of a
subclass of median voter schemes that is ’monotonic’ on the
market population. The monotonicity here means that, as-

suming an outcome o ∈ I for the current population, the
new arrival of an agent i with θi ≤ o does not push the out-
come to the right. Indeed, any median voter scheme that vio-
lates participation does not preserve this monotonicity prop-
erty. For instance, in the above example, adding a new agent
at 0 moves the outcome from 0 to 1.

5 Facility Location in a Dynamic Model
In this section, we formally define our dynamic model of
facility location. Let I := [0, 1] be an interval again, and let
T := {1, . . . , t, . . . , T} be the sequence of T periods in the
market. We then define Θi ⊂ I×T ×T for every i ∈ N . An
agent’s type θi is represented as a triple (xi, ai, di), where
xi ∈ I is her location, ai ∈ T is her arrival period, and di ∈
T is her departure period. Furthermore, letO := IT , and let
o := (o1, . . . , ot, . . . , oT ) ∈ O be an outcome, where ot ∈ I
indicates the location of the facility at period t under the
outcome o. For given θi = (xi, ai, di) and o = (ot)1≤t≤T ,
the cost of an agent iwith type θ under outcome o is given as
c(θi, o) :=

∑di
t=ai
|xi − ot|. In other words, in this dynamic

model, each agent i enters the market at the beginning of
period ai, reports her location xi on the interval [0, 1] to a
social choice function, and leaves the market at the end of
period di. The agent’s cost incurred from an outcome o is
defined as the sum of the distances between ot and xi for
all the periods where it stays in the market. Also, let α ∈ I
be the social state at the very beginning period 0, e.g., the
original location of the facility at the beginning of the facility
location problem.

In our dynamic model, we assume that a social choice
function must be online, meaning that a decision at period t
only depends on the information available during the first t
periods. For notation simplicity, we sometimes refer to the
leftmost location at period t when the agents’ type profile is
θ as l(t, θ), and the rightmost location as r(t, θ). Note that
in this dynamic model, an outcome is Pareto efficient if and
only if it returns a Pareto efficient location at every period.
Formally, o = (ot)1≤t≤T is Pareto efficient under profile θ
if and only if l(t, θ) ≤ ot ≤ r(t, θ) for every t ∈ T .

We also introduce a reasonable assumption on the power
of misreports by agents. We assume that each agent cannot
arrive earlier than its true arrival time, which is a quite pop-
ular assumption in online mechanism design (Hajiaghayi,
Kleinberg, and Parkes 2004; Parkes 2007).

Assumption 1 (No-Early-Arrival). An agent i whose true
arrival time is ai cannot arrive earlier than ai. Formally, for
any i ∈ N and any θi = (xi, ai, di) ∈ Θi,R(θi) is such that
∀θ′i = (x′i, a

′
i, d
′
i) ∈ R(θ), it holds that ai ≤ a′i.

If an online social choice function independently runs
a truthful social choice function (in the static sense) for
each period, it is truthful even though agents can misreport
their arrivals. Actually, any combination of the above social
choice rules in Eq. 2 satisfies all these properties. In this sec-
tion, however, we propose a new online social choice func-
tion that is not just such a combination. Instead, it utilizes
the current location of the facility to decide the location for
the next period.



Mechanism 1 (Dynamic target rule). The dynamic target
rule τ is a social choice function such that for any N ⊆ N
and any θ ∈ ΘN ,

τ t(θ) = med(τ t−1(θ), l(t, θ), r(t, θ)),

where τ t represents a function that returns the location of
the facility for period t ∈ T and τ0(θ) := α for any θ.

Under the dynamic target rule, if the location chosen in
the previous period is still Pareto efficient in the current pe-
riod, the location does not change. Otherwise, the closest
Pareto efficient location from the previous location is cho-
sen. The following example demonstrates how the dynamic
target rule works for a given profile of types.
Example 2. Let α = 0.4 and T = 6, and there are seven
agents, whose true types are given as θ1 = (0.1, 3, 5),
θ2 = (0.2, 6, 6), θ3 = (0.3, 3, 4), θ4 = (0.4, 1, 1), θ5 =
(0.5, 1, 2), θ6 = (0.6, 1, 3), and θ7 = (0.7, 2, 2).

In period 1, there are three agents, each of which is lo-
cated at 0.4, 0.5, and 0.6. The dynamic target rule therefore
locates the facility at τ1 = med(α, 0.4, 0.6) = 0.4 for pe-
riod 1. In period 2, agents are located at 0.5, 0.6, and 0.7.
Thus the facility is located at τ2 = med(τ1, 0.5, 0.7) =
med(0.4, 0.5, 0.7) = 0.5. We can analogously calculate the
sequence of locations, which is (0.4, 0.5, 0.5, 0.3, 0.1, 0.2).

The following theorem shows that the dynamic target sat-
isfies all four desiderata. The most surprising part is its truth-
fulness and participation; although it utilizes the current lo-
cation to decide the future location, it does not provide any
chance for agents to improve by any possible manipulation.
Theorem 2. The dynamic target rule is truthful, anonymous,
and Pareto efficient, and satisfies participation.

Proof Sketch. Both anonymity and Pareto efficiency obvi-
ously hold. To show participation and truthfulness, we first
observe two key properties of the static functions used in
each period, which is actually the target rule for the static
model and thus its parameters satisfy Eq. 2.

The first property is that, any possible manipulation by
a single agent in the static model, i.e., misreporting its loca-
tion and not participating, moves the outcome to the opposite
side. More precisely, letting i be such a manipulator, u ∈ I
be the original outcome under its truth-telling, and v ∈ I
be the manipulated outcome, we can show that either xi ≤
u ≤ v or xi ≥ u ≥ v holds. For misreporting, this is a well-
known property commonly preserved by any median voter
scheme. For not participating, it is essentially a special case
of what we shown in the proof of Theorem 1. The second
property is a kind of monotonicity on the parameter. For any
two different points β, β′(< β) ∈ I, and any profile of re-
ported locations x = (xi)i∈N , med(β,mini xi,maxi xi) ≥
med(β′,mini xi,maxi xi) holds.

To show both the participation and truthfulness of the dy-
namic target rule τ , it obviously suffices to show that no
agent can benefit by any manipulation, even if it can, at each
period, report any location (or even choose not to partici-
pate) regardless of its reports in the previous periods. At pe-
riod 1, the target rule τ uses τ0 = α as the parameter. Then,
from the above first property, the outcome by truth-telling is

Figure 1: The outcomes of the dynamic target rule τ , indi-
cated by blue, and the dynamic median rule µ that always
chooses the median location among participating agents, in-
dicated by orange, for the profile given in Example 2.

closer to xi than that by any manipulation. Let us then as-
sume that, in period t ∈ T , the location u ∈ I of the facility
under truth-telling and the location v ∈ I under such a ma-
nipulation satisfies either xi ≤ u ≤ v or xi ≥ u ≥ v. Then
let u′ be the location returned by τ t+1 with parameter u and
v′ be the location returned by τ t+1 with parameter v, under
the truth-telling of the manipulator i. From the second prop-
erty, either xi ≤ u′ ≤ v′ or xi ≥ u′ ≥ v′. Furthermore, from
the first property again, for both u′ and v′, no manipulation
draws them closer to xi. By recursively applying this argu-
ment, we show that there is no beneficial manipulation.

There might still be some other way to utilize the cur-
rent location to decide the future location. However, the fol-
lowing results show the optimality of the proposed rule in
terms of the replacement cost among all (possibly not on-
line) Pareto efficient ones. Note that the restriction to Pareto
efficient rules is essential; otherwise choosing α for every
period obviously minimizes the replacement cost.
Definition 5 (Replacement cost). For given θ, the replace-
ment cost of a social choice function f , denoted as RC(f, θ),
is defined by ∑

t∈T
|f t(θ)− f t−1(θ)|,

where f0(θ) := α.
Intuitively, the replacement cost is a quantitative measure

that reflects the cost of changing the social state, such as
making a new political decision in an election or rebuilding
a train station like the facility location. In practice, choosing
an social alternative that is quite different from the current
one is more costly for society, for instance, due to an en-
forcement of new rules by the government.
Theorem 3. The dynamic target rule is optimal for replace-
ment cost among all Pareto efficient social choice functions.
Formally, for any Pareto efficient (possibly not online) social
choice function f , any N ⊆ N and any θ ∈ ΘN ,

RC(τ, θ) ≤ RC(f, θ).

Proof. Let N ⊆ N and θ ∈ ΘN respectively be an arbi-
trarily chosen set of participating agents and arbitrarily cho-
sen profile of types. We assume without loss of generality



that the first outcome that differs from α is on the positive
side from α. Formally, letting s0 := 0 and s+

0 := min{t ≥
s0 | τ t 6= α} ∈ T , we assume that τs

+
0 > α holds.

Also, let s1 ∈ T be the first period where the sequence
of locations changes the direction of the move from posi-
tive to negative, s2 be the first period where the sequence
of locations changes the direction of the move from neg-
ative to positive, and so on. Formally, for an odd h ≥ 1,
letting s̄h := mint′{t′ > sh−1 | τ t

′+1 < τ t
′}, we de-

fine sh := mint{sh−1 ≤ t ≤ s̄h | τ t = τ s̄h}. For an
even h ≥ 2, we use s̄h := mint′{t′ > sh−1 | τ t

′+1 >

τ t
′}. By this procedure, we obtain the sequence of period

s = (s1, s2, . . . , sh, . . . , sH). For the profile given in Exam-
ple 2, the sequence is {s1, s2, s3} = {2, 5, 6}, e.g., at period
s1 = 2, it stops moving in a positive direction (see Figure 1).

To complete that proof, it suffices to show that for each
h ∈ {0, . . . ,H − 1} and for each sequence of periods
{sh, . . . , sh+1} ⊆ T (where s0 is defined as zero for a
technical reason), the replacement cost of τ is less than
that of any Pareto efficient rule f . Formally, for any h ∈
{0, . . . ,H − 1},∑
t∈{sh...,sh+1−1}

|τ t+1 − τ t| ≤
∑

t∈{sh...,sh+1−1}

|f t+1 − f t|.

For Example 2, it compares the total moves for each subse-
quence of periods: {0, 1, 2}, {2, 3, 4, 5}, and {5, 6}.

Assuming that h is even (or zero), we consider the se-
quence of periods ending at sh+1. Since sh is the first period
where τ changes the direction of its move from negative to
positive, τsh is located at the right extreme of the Pareto ef-
ficient set at the period, i.e., τsh = r(sh, θ) holds. Since f
is Pareto efficient, fsh ≤ τsh holds. Analogously, τsh+1 is
located at the left extreme of the Pareto efficient set at the pe-
riod, and thus both τsh+1 = l(sh+1, θ) and τsh+1 ≤ fsh+1

hold. Moreover, since τ does not change direction during the
sequence of periods, we can obtain∑

t∈{sh...,sh+1−1}

|τ t+1 − τ t| = |τsh+1 − τsh |.

Therefore, regardless of the actual move of f during the se-
quence of periods,∑

t∈{sh...,sh+1−1}

|f t+1 − f t| ≥ |fsh+1 − fsh |

≥ |τsh+1 − τsh |
holds. It also holds for any odd h from symmetry.

6 Balancing Two Measures in Average
Social cost is a well-known evaluation criterion of social
choice functions in the literature of algorithmic mechanism
design. In our dynamic model, we can also straightforwardly
define the social cost of a social choice function.
Definition 6 (Social Cost). For given θ, the social cost of a
social choice function f , denoted as SC(f, θ), is defined by∑

i∈N
c(θi, f(θ)) :=

∑
t∈T

∑
i∈Nt

|xi − f t(θ)|,

where N t := {i ∈ N | ai ≤ t ≤ di} indicates the set of
agents present at period t.

Since agents have no time discount on their costs in our
dynamic model, we can change the order of summations (see
the right-hand side). Here, the inner summation corresponds
to the social cost for one particular period. This means that,
for any input θ, the social cost is minimized by choosing the
median location at every period. Let µ refer to such an online
social choice function, called the dynamic median rule. It is
easy to see that the social cost of the dynamic target rule
can be arbitrarily worse than that of the dynamic median
rule. On the other hand, the replacement cost of the dynamic
median rule can be arbitrarily worse than that of the dynamic
target rule. Our purpose in this section is therefore to find an
online social choice function that balances the performance
in terms of these two measures.

The following is a class of online social choice functions,
which contains the dynamic median rule µ and the dynamic
target rule τ as two extremes.
Mechanism 2 (k-shifted median). For any k ∈ N≥0, the
k-shifted median rule σk is an online social choice function
such that for any N ⊆ N , any θ ∈ ΘN , and any t ∈ T ,
σk,t(θ) is a social choice function defined in Eq. 1, where
its parameters pn, for each n, are defined as follows:

σk,t−1(θ), . . . , σk,t−1(θ)︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
d(n−1−k)/2e

, 1, . . . , 1︸ ︷︷ ︸
b(n−1−k)/2c

where pn = (σk,t−1(θ), . . . , σk,t−1(θ)) if n ≤ k, and
σk,0(θ) := α for any θ.

The basic idea of k-shifted median is as follows. In a me-
dian voter scheme, we set the location of the previous period
as the location of k phantom voters; the location becomes
less likely to move by increasing k. We can easily observe
that setting k = 0 corresponds to the dynamic median rule
and choosing a sufficiently large k corresponds to the dy-
namic target rule. Note that any choice of the parameters,
as long as it follows the above manner, satisfies Eq. 2, and
thus it satisfies the truthfulness and participation properties,
as well as anonymity and Pareto efficiency, even in the dy-
namic model. Here we can also clarify the relationships of
any pair of the k-shifted median rules in terms of replace-
ment cost, which shows that a k-shifted median rule with a
smaller k dominates that with any larger parameter k′(> k).
Theorem 4. For any pair k ∈ N≥0, the k-shifted median
rule σk is truthful, anonymous, Pareto efficient, and satisfies
participation. Furthermore, for any k ∈ N≥0, any N ⊆ N ,
and any θ ∈ ΘN , RC(σk+1, θ) ≤ RC(σk, θ) holds.

Proof Sketch. For all four desiderata, almost the same argu-
ment with the proof for the dynamic target rule holds for the
following two reasons: (i) any of these online social choice
functions uses the static social choice function described in
Eq. 2 for each period, and (ii) any such function has a prop-
erty that any possible manipulation by an agent, i.e., mis-
reporting location and not participating, always moves the
outcome to the opposite side, as we already observed in the
proof of Theorem 2. For dominance on replacement costs, a
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Figure 2: The simulation result for ratio of replacement cost.
Each curve shows ratio of replacement cost of k-shifted me-
dian, where k = 0 corresponds to the dynamic median.

quite similar argument for the dynamic target rule also holds,
by first obtaining a sequence of periods from the move of the
k+1-shifted median rule and comparing its replacement cost
to k + 1-shifted median rule for each subsequence.

On the other hand, for any pair k, k′(> k) ∈ N≥0, the k-
shifted median rule cannot dominate the k′-shifted median
rule with respect to the social cost (except for k = 0). That
is, we can find at least one profile of types under which the
social cost of the k-shifted median rule is strictly larger than
that of the k′-shifted median rule.

Example 3. Let α = 1 − ε for a sufficiently small ε and
assume there are 2k + 2 agents, whose types are given
as follows: agent 1 has type (0, 1, T ), agents 2, . . . , k + 1
have type (1 − ε, 1, 1), agents k + 2, . . . , 2k + 1 have type
(ε, 2, T ), and agent 2k + 2 has type (1, 1, T ). In period 1,
agents 1, 2, . . . , k+ 1, 2k+ 2 participate. The k-shifted me-
dian σk then adds k + 1 phantom voters, k of which are
at α = 1 − ε and one is at 0. Thus, the facility is built at
ε, and the sum of the participating agents’ costs at this pe-
riod is 1. At every subsequent periods, k agents located at
1 − ε participate, while the k agents located at ε no longer
exist. The facility is kept at ε, where the sum of the costs at
each period is 1 + k(1 − 2ε). Therefore, the social cost is
2 + k(T − 1)(1 − 2ε). On the other hand, for any k′ > k,
the k′-shifted median rule σk

′
builds the facility at 1 − ε in

period 1, and keeps it unchanged at every subsequent period.
Therefore, the social cost is k(1 − 2ε) + (T − 1), which is
strictly smaller than the above when T > 2 (and the gap
expands when T grows).

In contrast, our simulation results show that such an “un-
fortunate” example rarely occurs when agents’ types are suf-
ficiently distributed, and these social choice functions actu-
ally performs well on average. We simulate some shifted
median rules by changing the parameters, as well as the
dynamic target and dynamic median rules, and compare
their replacement and social costs. More specifically, we set
T = 100 and randomly generated 10,000 instances of the
dynamic facility location problem, where each agent’s loca-
tion xi is independently drawn from a predefined identical
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Figure 3: The simulation result for ratio of social cost. Each
curve shows ratio of social cost of k-shifted median, where
k = n− 1 corresponds to the dynamic target.

distribution over [0, 1], and the arrival period ai is also in-
dependently drawn from a predefined identical distribution
over [1, T ]. For the distribution of the departure period di,
we use both the uniform and exponential distributions over
[ai, T ]. In both figures, the x-axis denotes the number of par-
ticipating agents, and the y-axis denotes the ratio of the re-
placement and social cost against the optimal solution, i.e.,
the dynamic target and the dynamic median, respectively.

One of the most important observation from our experi-
ments is that under any of the randomly generated 10000 in-
stances and under both distributions for di, a shifted median
rule with a smaller k outperforms any shifted median rule
with a larger k in terms of social cost. This means that, if we
can guarantee that agents’ types are sufficiently distributed,
the proposed k-shifted median rule is a reasonable candidate
that balances the quality of the replacement and social costs.
Furthermore, the figures show that the performance of the k-
shifted median rules in average varies based on the choice of
parameter k. The ratio of replacement cost increases when
the number of agents n raises, since the (k-shifted) median
location frequently changes. On the other hand, the ratio of
social cost converges to one for large n, since the optimal
social cost by the dynamic target rule is already very large.

7 Conclusion
We studied variable populations in the static and dynamic
facility location models. For static model, we clarified a nec-
essary and sufficient condition for a social choice function to
satisfy participation, as well as truthfulness, anonymity, and
Pareto efficiency. For dynamic model, we proposed a class
of online social choice functions and analyzed their perfor-
mance in both theoretical and experimental ways.

One obvious future work is to clarify the existence of on-
line social choice functions that theoretically outperform the
dynamic target for social cost and the dynamic median for
replacement cost. Studying a different measure, such as min-
imizing the number of replacements, i.e., min #{t ∈ T |
f t(θ) 6= f t−1(θ)} would also be a possible future direction.
Considering more powerful manipulations such as renaming
in the dynamic model might also be interesting.
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